Erikson Institute

Early Math Collaborative

Using NUMBER Sense to Build OPERATIONS Sense

Lisa Ferguson
Instructional Coach & PD Facilitator

5-8 Breakout Session, *Children as Mathematicians* PD Institute Omaha, Nebraska January 25 & 27, 2018

A Tale of Feet & Tails

My Grandpa is a funny guy. He always tells people, "When I look around my house, I can count some feet and some tails."

A Tale of Feet & Tails

My Grandpa is a funny guy. He always tells people, "When I look around my house, I can count some feet and some tails."

What is going on? What do you "see"? What do we know?

A Tale of Feet & Tails

My Grandpa is a funny guy. He always tells people, "When I look around my house, I can count 14 feet and 2 tails."

A Tale of Feet & Tails

My Grandpa is a funny guy. He always tells people, "When I look around my house, I can count 14 feet and 2 tails."

What are the quantities? What do they mean? How are they related?

A Tale of Feet & Tails

My Grandpa is a funny guy. He always tells people, "When I look around my house, I can count 14 feet and 2 tails."
Who lives in Grandpa's house?

A Tale of Feet & Tails

My Grandpa is a funny guy. He always tells people, "When I look around my house, I can count 14 feet and 2 tails."
Who lives in Grandpa's house?

Work this out individually.

A Tale of Feet & Tails

My Grandpa is a funny guy. He always tells people, "When I look around my house, I can count 14 feet and 2 tails."
Who lives in Grandpa's house?

Work this out individually.

Turn & Talk: Introduce yourself to a partner and share your results.

Continuing the Tale of Feet and Tails...

What did you learn about:

- solving problems?
- numbers and operations?

What if the numbers of feet and tails were different?

Turn & Talk

- What did you notice about how this word problem was presented?
- How does this compare to what you usually do to engage students in a word problem?

Strategies Observed

- Focused on the "story"
- Delayed the mention of the quantities
- The question was provided as the last thing
- The operation needed to solve the problem was not mentioned
- No strategy was provided
- The story was read aloud

The "Three Reads" Strategy:

Making **SENSE**of Problems **BEFORE**Solving Them

The "Three Reads" Strategy OUTLINE

1. Comprehending the TEXT

The "Three Reads" Strategy OUTLINE

- 1. Comprehending the Text
- 2. Comprehending the MATHEMATICS

The "Three Reads" Strategy OUTLINE

- 1. Comprehending the Text
- 2. Comprehending the Mathematics
- 3. Eliciting Mathematical QUESTIONS

What are operations?

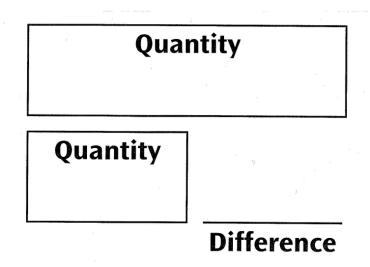
What are operations?


All operations tell a **STORY**.

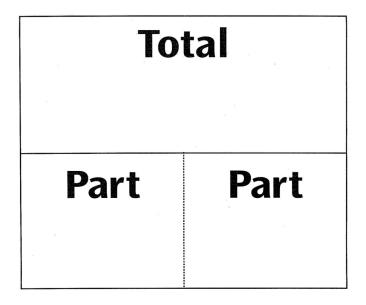
Basic Types of Addition & Subtraction Number Stories

- Change Situations
 - Join
 - Separate
- Relationships
 - Compare
 - Number Composition

By varying the unknown within each type of number story, many different problem situations can be constructed.


Change Situation: Joining or Separating

- Result Unknown How many in the end?
- Change Unknown How many were added or taken away?
- Start Unknown How many were there at first?


Erikson Institute

Relationship Situation: Comparison

- Difference Unknown How many more or less?
- Quantity Unknown How many in the set?

Relationship Situation: Number Composition

- Whole Unknown How many altogether?
- Part Unknown How many to complete the whole?

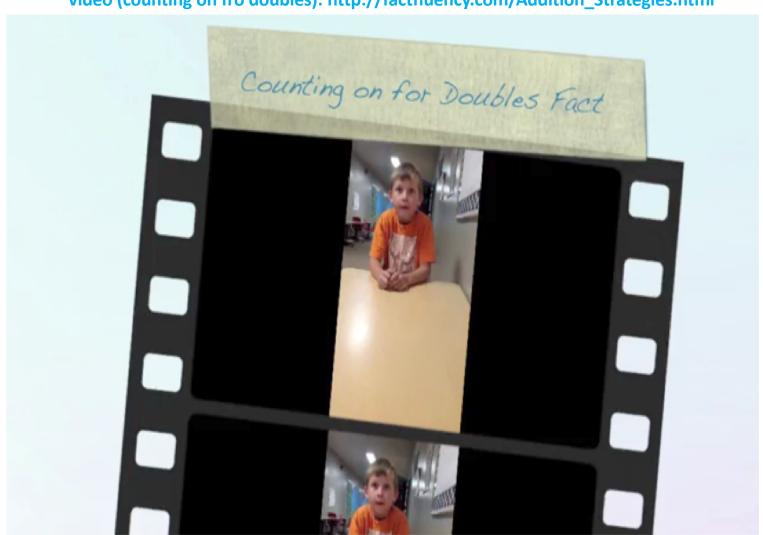
Big Ideas of Number Operations

Торіс	Big Ideas	Examples
Changing Sets ☆☆+☆☆☆	 Sets can be changed by adding items (joining) or by taking some away (separating). 	 You have 2 balls and I have 3 balls. How many balls do we have altogether? You had 12 cards, and you gave your friend 5. How many do you have now?
Comparing Sets	• Sets can be compared using the attribute of numerosity, and ordered by more than, less than and equal to.	 I have a handful of raisins; Chris has a bowl-ful. Chris has more! I have 1 pear and 1 peach; you have 2 apples. We have the same number of fruits. Avery has 3 dirty plates, and Tracy has 4 dirty bowls. Who has fewer dishes to wash?
Number Composition	• A quantity (whole) can be decomposed into equal or unequal parts; the parts can be composed to form the whole.	•How many ways can you show 5 with fingers on both hands?

Books can inspire number stories!

Learning Trajectory: Development of Children's Solution Strategies

- Direct Modeling Strategies
 - Use of objects (manipulatives), fingers, or drawings to directly model the action or relationship described in the problem


video: http://factfluency.com/Addition_Strategies.html

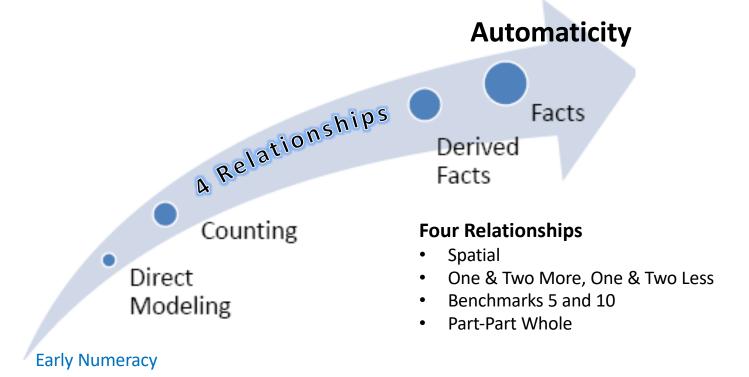
Learning Trajectory: Development of Children's Solution Strategies

- Direct Modeling Strategies
 - Use of objects (manipulatives), fingers, or drawings to directly model the action or relationship described in the problem
- **Counting Strategies** Use the counting sequence itself to figure out the solution
 - Usually involves a strategy to keep track of counts


video (counting on fro doubles): http://factfluency.com/Addition_Strategies.html

Learning Trajectory: Development of Children's Solution Strategies

- Direct Modeling Strategies
 - Use of objects (manipulatives), fingers, or drawings to directly model the action or relationship described in the problem
- **Counting Strategies** Use the counting sequence itself to figure out the solution
 - Usually involves a strategy to keep track of counts
- Operived Facts Strategies Use "friendly" numbers first: doubles, sums of tens
 - Over time, children learn many number facts at recall level


CGI Progression

How do we build automaticity? •Build Number Sense

"...good intuition about numbers and their relationships. It develops gradually as a result of exploring numbers, visualizing them in a variety of contexts, and relating them in ways that are not limited by traditional algorithms." (Howden)

CGI Progression

Four relationships that build number sense

- **Spatial Relationships** recognizing how many without counting by seeing the visual pattern.
- One & Two More, One & Two Less this is not the ability to count on two or count back two, but instead knowing which numbers are one more or two less than any given number.
- Benchmarks of 5 and 10 since 10 plays such an important role in our number system (and two 5s make up 10), students must know how numbers relate to 5 and 10.
- Part-Part-Whole to conceptualize a number as being made up of two or more parts is the most important relationship to develop.

Van De Walle, 2006

Cognitively Guided Instruction Progression

6 + 7

- Direct Modeler counts out 6 things, counts out 7 things,
 pushes them all together and counts the total.
- Counter holds 6 in their head and counts on 7 more.
- Derived Fact uses a fact they know to help them.

Derived Facts

6 + 7

 What are some derived facts that kids might use to solve this problem?

Use Number Sense to Help

$$6 + 7$$

6+6+1 6+4+3 7+7-1 3+3+7 1+5+5+2

Use Number Sense to Help

$$6 + 7$$

 What relationships would students need to have before they can use the derived facts for this problem?

Use Number Sense to Help

$$6 + 7$$

What relationships would students need to have before they can use the derived facts for this problem?

* spatial

- * one/two more and less
- * benchmarks of 5 & 10
- * part-part-whole

When we focus on **NUMBER RELATIONSHIPS**,

- children become "fluent" in their thinking about basic facts
- children's knowledge is extended when they encounter a new task

When we build a child's **NUMBER SENSE**, it promotes **THINKING** instead of just **computing**

Components of Fluency

Accuracy

Fluency

Appropriately

What is fluency?

- Accuracy the ability to solve the problem correctly
- Efficiency the ability to solve the problem in a
- reasonable amount of time
- Flexibility the ability to use a variety of strategies
- to solve a particular problem (to be able to think about a
- solution in a number of different ways)
- Appropriately the ability to choosing the BEST
- strategy for that particular problem and set of numbers

Lighten the Load – think relationships!

Purple – plus zero

Green – facts that make 10

Orange – doubles

Blue – ten plus something

100 Facts!

×	1	2	3	4	5	6	7	8	9	10
1	1×1	1×2	1×3	1×4	1×5	1×6	1×7	1×8	1×9	1×10
2	2×1	2×2	2×3	2×4	2×5	2×6	2×7	2×8	2×9	2×10
3	3×1	3×2	3×3	3×4	3×5	3×6	3×7	3×8	3×9	3×10
4	4×1	4×2	4×3	4×4	4×5	4×6	4×7	4×8	4×9	4×10
5	5×1	5×2	5×3	5×4	5×5	5×6	5×7	5×8	5×9	5×10
6	6×1	6×2	6×3	6×4	6×5	6×6	6×7	6×8	6×9	6×10
7	7×1	7×2	7×3	7×4	7×5	7×6	7×7	7×8	7×9	7×10
8	8×1	8×2	8×3	8×4	8×5	8×6	8×7	8×8	8×9	8×10
9	9×1	9×2	9×3	9×4	9×5	9×6	9×7	9×8	9×9	9×10
10	10×1	10×2	10×3	10×4	10×5	10×6	10×7	10×8	10×9	10×10

Ones (identity)

Doubles

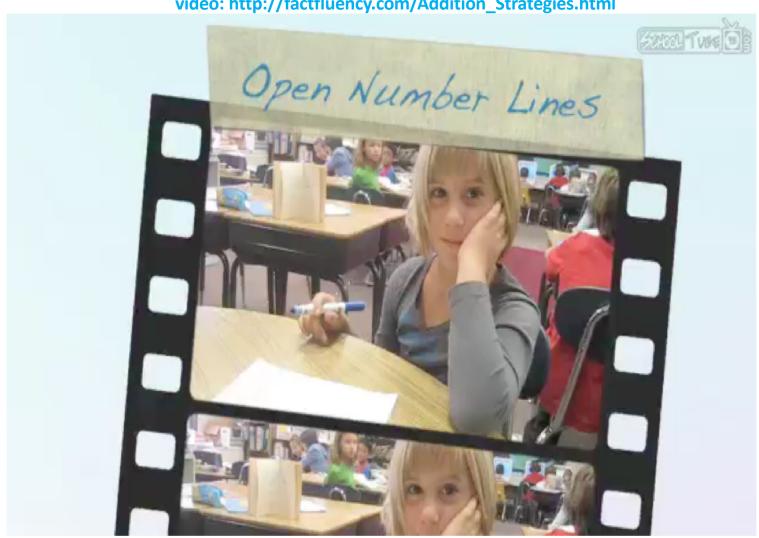
Fours
(double doubles)

Tens

Fives

Nines

Commutative


video analysis – focus on algorithm

video: http://factfluency.com/Addition_Strategies.html

Combining the 4 NUMBER RELATIONSHIPS with the "THREE READS" STRATEGY can be

POWERFUL

for building good OPERATIONS SENSE!

Erikson Institute

It's all about the QUANTITIES!

ADJUSTING QUANTITIES

in story problems can give students opportunities to practice the Number Relationships

Carolina received a package of bracelets for her birthday. There were _____ bracelets in the package. She put on ____ bracelets. How many bracelets did she leave in the package?

Carolina receiv	ved a package of bracelets for her birthday.
There were	bracelets in the package. She put on
bracelets. How	w many bracelets did she leave in the package?
What's the Sto	ory (<i>Operation</i>) ?

Carolina received a package of bracelets for her birthday. There were ____ bracelets in the package. She put on ___ bracelets. How many bracelets did she leave in the package?

What's the Story (Operation)? Changing Situation - Separating

	ina received a package of bracelets for her birthday. There were bracelets in the package. She put on bracelets. How many						
bracelets did she leave in the package?							
What	s's the Story (Operation)? Changing Situation – Separating						
What	quantities would you choose?						
• [Benchmark 5 and 10: (,) (,) (,)						

Carolina received a package of bracelets for her birthday. There were _____ bracelets in the package. She put on ____ bracelets. How many bracelets did she leave in the package?

What's the Story (*Operation*)? Changing Situation – Separating

What quantities would you choose?

Benchmark 5 and 10: (5, 2) (10, 3) (20, 15)

Carolina received a package of bracelets for her birthday. There were bracelets in the package. She put on bracelets.								
How many bracelets did she leave in the package?								
What's t	the Story (<i>Operation</i>))? <u>Chan</u>	ging Si	ituation –	Separatin	g		
What qu	uantities would you o	choose?						
• Ben	nchmark 5 and 10: (5, 2) (1	LO, 3)	(20, 15)				
• 1 or	r 2 More/Less: (1	(1	1	١		

Carolina received a package of bracelets for her birthday. There were ____ bracelets in the package. She put on ___ bracelets. How many bracelets did she leave in the package?

What's the Story (*Operation*)? Changing Situation – Separating

What quantities would you choose?

- Benchmark 5 and 10: (5, 2) (10, 3) (20, 15)
- 1 or 2 More/Less: (4, 3) (7, 6) (13, 11)

Erikson Institute

Carolina received a package of bracelets for her birthday. There were ____ bracelets in the package. She put on ___ bracelets. How many bracelets did she leave in the package? What's the Story (*Operation*)? Changing Situation – Separating

What quantities would you choose?

- Benchmark 5 and 10: (5, 2) (10, 3) (20, 15)
- 1 or 2 More/Less: (4, 3) (7, 6) (13, 11)
- Parts/Whole: (____, ___) (____, ___)

Erikson Institute

Early Math Collaborative

Carolina received a package of bracelets for her birthday. There were ____ bracelets in the package. She put on ___ bracelets. How many bracelets did she leave in the package?

What's the Story (*Operation*)? Changing Situation – Separating

What quantities would you choose?

- Benchmark 5 and 10: (5, 2) (10, 3) (20, 15)
- 1 or 2 More/Less: (4, 3) (7, 6) (13, 11)
- Parts/Whole: (4, 2) (9, 6) (18, 12)

In Summary....

To Use Number Sense to Build Operations Sense Through Stories:

- Know the STORY
- ADJUST QUANTITIES to target Number Relationships
- Use the THREE READS Strategy to help children visualize and make sense of the story